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The standard way of describing noise in a quantum system consists in attaching
to the system a reservoir or bath, which is assumed to be in thermal equilibrium.
Subsequently the combined equation of motion is solved to second order in the
interaction and by averaging the result over the bath one gets the density matrix
of the system itself. However, the differential equation obtained in this way has
a serious flaw, which can be attributed to the inappropriate initial condition.
For this reason we here take as starting point the thermal equilibrium of the
combined system; the averages and correlation functions of quantities of interest
provide us with the required information about the noise. This is explicitly
demonstrated on the special model of a harmonic oscillator coupled to a bath of
harmonic oscillators at temperature T. The result is compared with the standard
calculation and it is shown that the latter is incorrect for time intervals smaller
than kT/(. As an example the energy fluctuations in equilibrium are computed.
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1. THE STANDARD THEORY

Langevin (1) treated the classical theory of Brownian particles by describing
the rapidly and uncontrollably varying force exerted by surrounding mole-
cules as an additional term in the equations of motion. The instantaneous
value of that force cannot be described in detail but its short-time averages
have simple properties. Later the notion of a stochastic function made it
possible to create an elegant description, at the expense of some convenient
assumptions. In fact, it was so elegant that it was readily adopted, together
with its corollary the Fokker–Planck equation, whenever noise was
supposed to play a role, such as in electrical circuits. (2) The actual cause of
the noise was ignored in favor of ’’using stochastic assumptions whenever



necessary to obtain useful results.’’ (3) These assumptions postulate that the
stochastic noise term is Gaussian and delta-correlated in time. Even the
raining of molecules onto a surface has been so described, although it is
evidently a Poisson process. (4)

In 1954 it was pointed out by D. K. C. MacDonald that for nonlinear
equations the addition of a Langevin force is inconsistent. (5) One cannot
add indiscriminately a Langevin term to a macroscopic equation when that
equation is not linear. This was forcefully expressed by the question: Does
a diode rectify its own fluctuations? This situation gave rise to some dis-
cussion, involving the notorious Itô-Stratonovich dilemma; for literature
see ref. 6. The conclusion was that it is necessary to start from a more
fundamental level which includes the physical cause and the actual form of
the noise. This episode, however, was soon forgotten in favor of the so
convenient Langevin device. Langevin terms have even been used in equa-
tions purporting to describe neurons and economics. (7)

In quantum mechanics, however, attempts to write a Langevin equa-
tion for operators were not successful because of the need to formulate the
required stochastic properties for an operator random force. (8) (Inciden-
tally, to avoid confusion it should be remarked that it is possible to add
a suitably chosen Langevin term to the Schrödinger equation, but that
merely leads to the general formula of Kossakowski–Lindblad.) (6, 9) The
conclusion is again that one cannot avoid to add explicitly a description
of the mechanism that is the physical cause of the noise and the damping.
In other words, one must attach to the system S considered a reservoir or
bath B, consisting of many particles, which are the source of fluctuating
perturbations in system S. The idea is that the many degrees of freedom of
B keep the bath at all times practically in thermal equilibrium so as not to
perturb S. Yet the influence of S produces a slight deviation from that
equilibrium, and this deviation acts back on S. This is the cause of both
damping and noise in S; evidently they are of second order in the coupling
strength.

This second order perturbation calculation is standard since
Zwanzig. (10) The total system T=S+B is subject to a total Schrödinger
equation with total Hamiltonian

HT=HS+HB+aHI, (1.1)

which includes an interaction aHI with coupling constant a. One then takes
an initial condition at t=0, in which S and B are uncorrelated:

rT(0)=rS(0) é req
B . (1.2)
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The Schrödinger equation (or rather von Neumann equation) for its
density matrix rT can be solved to second order in a to give rT(t) and sub-
sequently rS(t)=TrB rT(t). In this way one obtains rS(t) for given initial
rS(0). Explicit calculation for small time Dt gives (6)

rS(Dt)=rS(0) − i[HS, rS(0)] Dt+Dt KrS(0). (1.3)

Here K is a ‘‘superoperator,’’ i.e., a linear operator acting on the space of
density matrices. One concludes that r(t) obeys the differential equation

ṙS(t)=−i[HS, rS(t)]+KrS(t). (1.4)

I shall refer to this as ‘‘the standard result.’’

2. THE PROBLEM

This standard result cannot, however, be correct for the following
reason. Any differential equation for a density matrix must have the prop-
erty that the trace of the matrix is constant (equal to unity), that the matrix
remains hermitian, and that it remains positive definite. The most general
form for such a differential equation has been derived by Kossakowski and
by Lindblad. (11) The result (1.4) does not have this required form and may
lead to a r at t > 0 which is not positive definite, and therefore may give
rise to negative probabilities. What went wrong in the derivation?

It was not permitted to go from (1.3) to (1.4). Equation (1.3) was
obtained using the condition (1.2) for the initial state. After the time step
Dt, however, some correlation between S and B has been built up so that it
is not correct to apply the same argument for the next Dt, let alone for the
infinite sequence of time steps described by (1.4). The conclusion from (1.3)
to (1.4) involves the assumption that these unavoidable correlations will
not affect the result and that it is permitted to ignore them at each new
time step Dt. This is the ‘‘Repeated Randomness Assumption’’ or ‘‘mole-
cular chaos,’’ (12) which is indispensable in all derivations of irreversible
equations. It was used explicitly by Boltzmann and Lorentz, (13) but ignored
or hidden in most later treatments.

3. THE ANSWER

Actually the system S and the bath B are never uncorrelated as they
are constantly interacting. The glib excuse that the interaction is switched
on at t=0 is unrealistic; how does one turn on the interaction between a
Brownian particle and its surrounding molecules? At any rate this excuse
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does nothing to alleviate the need for a repeated randomness assumption.
Our answer to this difficulty is to consider the equilibrium state of the total
system T=S+B, including the interaction,

req
T =exp[ − bHT]/Z=exp[ − b(HS+HB+aHI)]/Z, (3.1)

Z=Tr exp[ − bHT]. (3.2)

For any observable AS relating to the system one may now compute the
average

OASP
eq=TrS+B ASreq

T

and the correlation function between two variables AS and BS, which in
case their averages vanish is given by

OAS(t1) BS(t2)Peq=TrS+B{AS(t1) BS(t2) req
T }.

From this one finds in particular OA2
SP

eq, which is the magnitude of the
fluctuations in AS, while the autocorrelation function OASAS(y)Peq mea-
sures their rate of decay. The dependence on the time difference y=t2 − t1

is the one determined by the total Hamiltonian HT.
Henceforth we omit the subscript S as we are interested only in

observables relating to S, and omit the superscript eq for the averages as
they will all refer to the equilibrium of the total system. I shall now
compute these quantities explicitly in order to compare them with the
standard results. A previous calculation (14) was based on the usual expan-
sion to second order in the interaction, but here I take an exactly solvable
model in order to display more clearly the benefit of considering correla-
tion functions rather than the unrealistic initial condition (1.2).

4. EXPLICIT COMPUTATIONS

First we have to choose a bath. Originally Senitzky (15) did not specify
the bath but ever since people have taken B to be a collection of harmonic
oscillators. (16) This is easy to handle and is justified by the idea that the
equations for the noise should not be sensitive to the specific form of the
bath. The main requirement is that the frequencies k of the oscillators form
a dense distribution and extends over a long range so as to mimick white
noise. The electromagnetic field is a prime example. It is to be expected,
however, that quantum mechanics cuts off high frequencies, so that a
spectrum can only be approximately white, as we shall see.
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Next we choose for the system S a harmonic oscillator as well, in order
to make explicit calculations possible. For the same reason I take the
interaction bilinear so that the total Hamiltonian is a quadratic form:

HT=1
2 (P2

0+W2Q2
0)+1

2 C
k

(P2
k+k2Q2

k)+Q0 C
k

akQk. (4.1)

The frequencies k serve also as subscripts and ak are coupling constants.
The subscript 0 indicates the oscillator S. This model can be solved exactly
by transforming to principal axes.

The quadratic form in the variables Q0, Qk may be diagonalized
(Appendix A) by means of an orthogonal matrix X

Q0=SnX0nqn, Qk=SnXknqn. (4.2)

When P0, Pk are similarly transformed into new momenta

P0=SnX0n pn, Pk=SnXkn pn (4.3)

the Hamiltonian reduces to

HT=1
2 C

n

(p2
n +w2

n q2
n ). (4.4)

The eigenfrequencies wn are the zeros of the analytic function

G(w)=w2 − W2 − C
k

a2
k

w2 − k2 . (4.5)

It is now possible to compute averages. In the first place we need the
partition function

Z=TrT exp 5−
1
2

b C
n

(p2
n +w2

n q2
n )6

=D
n

Trn
5−

1
2

b(p2
n +w2

n q2
n )6

=D
n

1
2 sinh(1

2 bwn)
. (4.6)

Subsequently one finds for the fluctuations, for example in P0,

OP2
0P=C

n

X2
0nOp2

nP=C
n

1
2 X2

0nwn coth ( 1
2 bwn). (4.7)
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Note that for b Q 0 (high temperature) this reduces to OP2
0P=SnX

2
0nb=b,

which is the standard formula. It will appear presently that X2
0n peaks at

wn % W, so that the condition for this limit amounts to (W ° kT, which is
the classical limit.

5. GENERAL TREATMENT

In order to compute averages of operators relating to S we introduce
the Fourier transform

K(x, y) — Oe ixP0+iyQ0P

=Tr{exp[ixP0+iyQ0] exp[ − bHT]}/Z, (5.1)

involving two real parameters x, y ¥ R. This trace is equal to

Pn Trn{exp[ixn pn+iynqn] exp [ − 1
2 b(p2

n +w2
n q2

n )]}/Z,

where xn=xX0n and yn=yX0n. In Appendix B this is found to result in

Oe ixP0+iyQ0P=exp 5−
1
4

C
n

X2
0n coth 11

2
bwn

23wnx2+
y2

wn

46 . (5.2)

From this the average of any polynomial in P0, Q0 is obtained by expand-
ing both members in x, y and comparing powers. One example is (4.7) and
furthermore

OQ2
0P=

1
2

C
n

X2
0n

coth(1
2 bwn)

wn

, (5.3)

OP0Q0+Q0P0P=0, so that OP0Q0P=−OQ0P0P=−
i
2

. (5.4)

Hence the average energy of our system is, in contrast with the standard
result,

OEP=
1
2

C
n

X2
0n
1wn+

W2

wn

2 coth
1
2

bwn. (5.5)

Again the standard result OEP=1/b is retrieved for b Q 0 assuming that
X2

0n peaks at wn % W.
Vice versâ, when the transform K(x, y) is given one may reconstruct

the density matrix, see Appendix C.
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6. TIME DEPENDENCE

Time correlations are found in the same way by inserting the time
dependence of the normal mode oscillators.

P0(t)=SnX0n pn(t)=SnX0n{pn(0) cos wnt − wnqn(0) sin wnt}. (6.1)

From this

OP0(0) P0(t)P=OSmX0m pm × SnX0n{pn cos wnt − wnqn sin wnt}P

=SnX
2
0n{Op2

nP cos wnt −OpnqnP wn sin wnt}

=C
n

1
2 X2

0n(wn coth 1
2 bwn cos wnt+iwn sin wnt) . (6.2)

Similarly one finds

OP0(0) Q0(t)P=C
n

1
2

X2
0n
1coth

1
2

bwn sin wnt − i cos wnt2 , (6.3)

OQ0(0) P0(t)P=C
n

1
2

X2
0n
1 − coth

1
2

bwn sin wnt+i cos wnt2 , (6.4)

OQ0(0) Q0(t)P=C
n

1
2

X2
0n
1 1

wn

coth
1
2

bwn cos wnt+i
sin wnt

wn

2 . (6.5)

The summation over the zeros wn of (4.5) can be written as a path
integral taking into account (A.2):

OP0(0) P0(t)P=
1

2pi
G

w2 dw

G(w)
3coth

1
2

bw cos wt+i sin wt4 , (6.6)

OP0(0) Q0(t)P=
1

2pi
G

w dw

G(w)
3coth

1
2

bw sin wt − i cos wt4 , (6.7)

OQ0(0) P0(t)P=
1

2pi
G

w dw

G(w)
3 − coth

1
2

bw sin wt+i cos wt4 , (6.8)

OQ0(0) Q0(t)P=
1

2pi
G

dw

G(w)
3coth

1
2

bw cos wt+i sin wt4 . (6.9)

The integration path is a loop around the positive real axis in the complex
w-plane, consisting of the two branches (.+iE, iE) and (−iE, . − iE).
Hence we may write for (6.6) (and similarly for the other three)
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OP0(0) P0(t)P= −
1

2pi
F

.

0

w2 dw

G+(w)
3coth

1
2

bw cos wt+i sin wt4

+
1

2pi
F

.

0

w2dw

G− (w)
3coth

1
2

bw cos wt+i sin wt4 . (6.10)

7. REDUCTION TO THE STANDARD RESULT

First assumption: the poles on the real axis lie densely (i.e., with
mutual distances negligible compared to E). The number of them in any
interval Dk, each multiplied with its contribution a2

k, will be denoted by
g(k) Dk. Then (for w > 0)

G(w ± iE)=w2 − W2 − F
.

0

g(k) dk
w2 − k2 ± ip

g(w)
2w

, (7.1)

where the integral is to be taken as a principal value.
Second assumption: g(k) is small, g(k)/k ° W2. The last two terms in

(7.1) are of importance only when w2 is close to W2, which justifies the
approximation

G(w ± iE)=w2 − W2 − F
.

0

g(k) dk
W2 − k2 ± ip

g(W)
2W

=w2 − W −2 ± iCŒ. (7.2)

The renormalized frequency WŒ is given by the principal-value integral

W −2=W2+F
.

0

g(k) dk
W2 − k2 ,

and CŒ=pg(W)/2W has the role of a damping. The approximate functions
G± (w) in (7.2) are analytic functions with zeros `W −2

+ CŒ, that is, WŒ − iC
and WŒ+iC respectively, with C=CŒ/2W.

Write for (6.10)

OP0(0) P0(t)P

= −
1

4pi
F

.

0

w2 dw

G+(w)
3e iwt 1coth

1
2

bw+12+e−iwt 1coth
1
2

bw − 124

+
1

4pi
F

.

0

w2 dw

G− (w)
3e iwt 1coth

1
2

bw+12+e−iwt 1coth
1
2

bw − 124 . (7.3)
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The first term on the first line containing the factor e iwt is cancelled by
shifting the path to the North and in the second term the path may be
shifted to the South leaving the contribution of the pole WŒ − iC

1
4 WŒe−iWŒte−Ct(coth 1

2 bWŒ − 1).

Similarly the first term on the second line yields a contribution after shift-
ing its path to the North. The final result is (for t > 0)

OP0(0) P0(t)P=1
2 WŒe−Ct{coth 1

2 bWŒ cos WŒt+i sin WŒt}. (7.4)

In the same way

OP0(0) Q0(t)P=1
2 e−Ct{coth 1

2 bWŒ sin WŒt − i cos WŒt}, (7.5)

OQ0(0) P0(t)P=1
2 e−Ct{ − coth 1

2 bWŒ sin WŒt+i cos WŒt}, (7.6)

OQ0(0) Q0(0)P=(1/2WŒ) e−Ct{coth 1
2 bWŒ cos WŒt+i sin WŒt}. (7.7)

Thus we have found the standard result with damping C and renor-
malized frequency WŒ. However, the shifting of the path can only be done
until it meets the first pole w=2pi/b, which corresponds to a time factor
exp[ − (2p/b) t]. Consequently the standard results are limited to times
long compared to b, or frequencies w obeying (w < kT. This expresses the
fact that in quantum mechanics no white noise exists as the high frequen-
cies are cut off at kT/(. Thus the stochastic treatment of noise is not valid
for short times and no differential equation for r(t) exists. Incidentally, this
inevitable lack of the required randomization at short times, see ref. 17, is
also the cause of the so-called quantum Zeno effect.

8. ENERGY CORRELATION

One application is the calculation of the single-time energy correlation

OE2P=1
4 O(P2

0+W2Q2
0)(P2

0+W2Q2
0)P. (8.1)

As a preliminary we note that for a bare harmonic oscillator with
Hamiltonian 1

2 (P2+W2Q2) in thermal equilibrium. The partition function is

Z=Tr exp 5−
1
2

b(P2+W2Q2)6=
1

2 sinh bW/2
.
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and the average energy is well known:

OEP=
1
2
OP2+W2Q2P=−

“

“b
log Z=

1
2

W coth bW/2.

Note that only for high temperature does it reduce to the classical 1/b. The
desired quantity (8.1) takes the form

OE2P=
1
4
O(P2+W2Q2)2P=

1
Z

“
2Z

“b2

= −
1
4

W2+
1
2

W2 coth2 bW/2=2OEP2 −
1
4

W2 (8.2)

or, alternatively

O(E −OEP)2P=
1
4

W2(coth2 bW/2 − 1)

=
W2

4 sinh2bW/2
=W2Z2. (8.3)

After this preliminary note, take the oscillator in interaction with the
bath. The expansion of (8.1) in the normal modes gives

OE2P=1
4 C

nmrs

X0nX0mX0rX0sO(pn pm+W2qnqm)(pr ps+W2qrqs)P

=1
4 C

nmrs

X0nX0mX0rX0s[Opn pm pr psP+W2(Opn pmqrqsP

+Oqnqm pr psP)+W4OqnqmqrqsP].

The averages vanish unless the four indices are pairwise equal, or all four
equal. The contribution of the latter case is

I=1
4 C

n

X4
0n[Op4

nP+W2(Op2
n q2

nP+Oq2
n p2

nP)+W4Oq4
nP].

We shall need some conclusions from (B.2):

Op2
nP=1

2 Cnwn, Oq2
nP=1

2 Cn/wn, OpnqnP=−Oqn pnP=−1
2 i

Op4
nP=3

4 C2
n w2

n , Oq4
nP=3

4 C2
n /w2

n , Op2
n q2

nP=Oq2
n p2

nP=1
4 C2

n − 1
2 .

(8.4)
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The contribution of the terms with n=m ] r=s is

II=1
4 C

n ] r

X2
0nX

2
0r[Op2

nPOp2
rP+W2(Op2

nPOq2
rP+Oq2

nPOp2
rP)+W4Oq2

nPOq2
rP]

=1
4 [OP2

0P
2+2W2OP2

0POQ2
0P+W4OQ2

0P
2]

− 1
4 C

n

X4
0n[Op2

nP
2+2W2Op2

nPOq2
nP+W4Oq2

nP
2]

=OEP2 − 1
4 C

n

X4
0n[Op2

nP
2+W4Oq2

nP
2] − 1

2 W2 C
n

X4
0nOp2

nPOq2
nP.

Then there are the two equal contributions with n=r ] m=s, and
n=s ] m=r, which are equal:

III=IV=1
4 C

n ] m

X2
0nX

2
0m[Op2

nPOp2
mP+W2(OpnqnPOpmqmP

+Oqn pnPOqm pmP)+W4Oq2
nPOq2

mP]

=1
4 OP2

0P
2+1

4 W4OQ2
0P

2 − 1
4 C

n

X4
0n[Op2

nP
2+W4Oq2

nP
2]

+1
4 W2[( − i

2)
2+( i

2)
2] − 1

4 W2 C
n

X4
0n[ − 1

2 ].

The final result is, taking into account (8.4),

OE2P=I+II+2 × III

=OEP2+
1
2
OP2

0P
2+

1
2

W4OQ2
0P

2

+
1
2

W2 C
n

X4
0n[Op2

n q2
nP−Op2

nPOq2
nP] −

1
4

W2+
1
4

W2 C
n

X4
0n

=2OEP2+
1
4

{OP2
0P− W2OQ2

0P}2 −
1
4

W2

=2OEP2 −
1
4

W2+
1
4
31

2
C

n

X2
0n
1wn −

W2

wn

2 coth
1
2

bwn
42

.
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The term in { } is the correction to (8.2) due to the corrected treatment of
the interaction with the bath.

It should be borne in mind, however, that in any application one must
decide whether one needs this bare energy E or perhaps a related quantity
involving some of the interaction energy.

APPENDIX A

In order to diagonalize the quadratic form

1
2 W2Q2

0+1
2 C

k
k2Q2

k+Q0 C
k

vkQk (A1)

one has to find the eigenvectors from the equations

W2Q0+C
k

vkQk=w2Q0

k2Qk+vkQ0=w2Qk.

Clearly

Qk=
vk

w2 − k2 Q0

(w2 − W2) Q0=C
k

v2
k

w2 − k2 Q0.

The eigenvalues w2
n are the zeros of the analytic function G(w) given in

(4.5). The normalization reads, for each separate eigenmode n,

1=Q2
0+C

k
Q2

k=Q2
0
31+C

k

v2
k

(w2
n − k2)2

4=Q2
0

G −(wn)
2wn

.

Thus the orthogonal transformation is

X0n== 2wn

G −(wn)
Xkn=

vk

w2
n − k2

= 2wn

G −(wn)
. (A2)

That made it possible to replace the sums in (6.2)–(6.5) with the integrals
(6.6)–(6.9).
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Note. One often considers, rather than (4.1), the Hamiltonian

HT=
1
2

(P2
0+W2Q2

0)+
1
2

C
k

3P2
k+k2 1Qk+

ak

k2 Q0
224 ,

which is positive definite by construction. (18) In the present work the
simpler form (4.1) is preferred at the expense of stipulating explicitly the
positivity condition

W2 > C
n

a2
k

k2=F
.

0

g(k)
k2 dk. (A3)

This condition ensures that (7.1) exists for w=0.
In order to make the transition to the integrals in (6.6)–(6.9) more

precise note that the function

G(z)=z − W2 − C
n

a2
k

z − k2

is analytic in the entire z-plane with the cut along the positive real axis.
Thanks to (A3) it has no zeros outside this cut and it behaves asymptoti-
cally for large z as |z|2. Hence the loop integrals in (6.6)–(6.9) do indeed
reduce to the integrals along the two sides of the positive real axis. It is
then to be assumed that G(z) can be continued across the cut to produce
the two zeros WŒ + iC.

APPENDIX B

To compute the trace for each separate n the index may be ignored
and it is convenient to employ temporarily a further canonical transforma-
tion:

pn=`wn p −, qn=q −/`wn , b `wn=b −, xn `wn=x −, yn/ `wn=yŒ.

Thus we have to compute

G(xŒ, yŒ; bŒ)=Tr(exp[ixŒpŒ+iyŒqŒ] exp[ − 1
2 bŒ(pŒ

2+qŒ
2)]), (B1)

which may be written in either alternative form

=e−ixŒyŒ/2 Tr(exp[ixŒpŒ] exp[iyŒqŒ] exp[ − 1
2 bŒ(pŒ

2+qŒ
2)])

=e+ixŒyŒ/2 Tr(exp[iyŒqŒ] exp[ixŒpŒ] exp[ − 1
2 bŒ(pŒ

2+qŒ
2)]).

New Approach to Noise in Quantum Mechanics 1069



Clearly for xŒ=yŒ=0 this reduces to (4.6). In order to compute this trace
first differentiate (18)

“G

“bŒ
= −

1
2

Tr 1 (pŒ
2+qŒ

2) exp[ixŒpŒ+iyŒqŒ] exp 5−
1
2

bŒ(pŒ
2+qŒ

2)62

=
1
2
1 “

2G

“xŒ
2+

“
2G

“yŒ
2
2+

1
2

i 1yŒ
“G

“xŒ
− x −

“G

“y −
2−

xŒ
2+yŒ

2

8
G.

A rotation in the (p, q)-plane does not affect the trace and therefore G

depends on xŒ, yŒ only through r=`xŒ
2+yŒ

2 so that the second term on
the right vanishes. Subsequently the factors e−lbŒ and e−r2/4 may be split off:

G=X exp[ − lbŒ − r2/4],
d2X

dr2 +11
r

− r2 dX

dr
+(2l − 1) X=0.

The eigenvalues are found to be l=l+1
2 with l=0, 1, 2, 3,... and the cor-

responding solutions are, in terms of Laguerre polynomials, e−r2/4Ll(r2/2).
For xŒ=yŒ=0 the sum of these eigensolutions must reduce to (4.6), hence

G — Tr (exp[ixŒpŒ+iyŒqŒ] exp[ − 1
2 bŒ(p −2+q −2])

=exp[ − r2/4] C
.

l=0
exp [ − (l+1

2) bŒ] Ll(r2/2)/Ll(0).

With the use of the generating functional of the Ll this may be written

G=exp[ − r2/4]
exp[ − 1

2 bŒ]
1 − e−bŒ

exp 5−
r2/2

ebŒ − 1
6=

exp [ − 1
4 r2 coth 1

2 bŒ]
2 sinh 1

2 bŒ
.

The final result is

7exp C
n

(ixn pn+iynqn)8=G/Z=exp 5− C
n

wnx
2
n +y2

n /wn

4
coth

1
2

bwn
6 .

(B2)

Remembering the definition of xn, yn one obtains (5.2).

APPENDIX C

Suppose for a system with variables P, Q and unknown density matrix
r the function of two variables

K(x, y)=Tr e ixP+iyQr
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is given and I want to determine the density matrix. In the representation in
which Q is diagonal

K(x, y)=e−ixy/2 Tr e ixPe iyQr

=e−ixy/2 FF dq dqŒ(q |e ixP| qŒ) e iyqŒ(qŒ |r| q)

=e−ixy/2 FF dq dqŒ d(q − qŒ+x) e iyqŒ(qŒ |r| q)

=e−ixy/2 F dqŒ e iyqŒ(qŒ |r| qŒ − x)

=F dq̄ e iyq̄(q̄+1
2 x |r| q̄ − 1

2 x).

Inverting the Fourier transform

1 q̄+
1
2

x |r| q̄ −
1
2

x2=
1

2p
F

.

−.

dy e−iyq̄K(x, y).

In a more customary notation q̄+1
2 x=q1 and q̄ − 1

2 x=q2,

(q1 |r| q2)=
1

2p
F

.

−.

dy e−iy(q2+q1)/2K(q1 − q2, y).

The generalization to N variables {qn}=q with corresponding p is trivial:

(q1 |r| q2)=(2p)−N F dNy e−iy · (q1+q2)/2K(q1 − q2, y).
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